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Abstract. In this paper, we consider a global optimization problem for a symmetric
Lipschitz continuous function g : [a, b]k → R, whose domain [a, b]k ⊂ Rk consists of k!
hypertetrahedrons of the same size and shape in which function g attains equal values.
A global minimum can therefore be searched for in one hypertetrahedron only, but then
this becomes a global optimization problem with linear constraints. Apart from that,
some known global optimization algorithms in standard form cannot be applied to solve
the problem. In this paper, it is shown how this global optimization problem with linear
constraints can easily be transformed into a global optimization problem on hypercube
[0, 1]k for the solving of which an applied DIRECT algorithm in standard form is possible.
This approach has a somewhat lower efficiency than known global optimization methods
for symmetric Lipschitz continuous functions (such as SymDIRECT or DISIMPL), but, on
the other hand, this method allows for the use of publicly available and well developed
computer codes for solving a global optimization problem on hypercube [0, 1]k (e.g. the
DIRECT algorithm). The method is illustrated and tested on standard symmetric functions
and very demanding center-based clustering problems for the data that have only one
feature. An application to the image segmentation problem is also shown.
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1 Introduction
A real symmetric function g : [a, b]k → R, of k variables is the one whose value at any
k-tuple of arguments is the same as its value at any permutation of that k-tuple. These
functions are often the subject of research in different applications [5, 11]. In this paper,
we shall especially consider symmetric Lipschitz continuous functions that occur naturally,
for example, in center-based clustering problems (see, e.g., [13, 16, 31]), whereby special
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importance is attached to searching for a globally optimal partition of the data that have
only one feature.

If the function g attains its global minimum on [a, b]k, then generally there exist at
least k! points from [a, b]k, where this global minimum is attained [11, 41]. However,
instead of solving a global optimization problem (GOP) for the function g, without loss of
generality, a simpler GOP for the function f : [0, 1]k → R

argmin
(c1,...,ck)∈[0,1]k

f(c1, . . . , ck), (1)

can be considered, where f = g ◦ κ and κ : [0, 1]k → [a, b]k, κ(x) = Dx + u, D =
diag (b − a, . . . , b − a) ∈ Rk×k, u = (a, . . . , a) ∈ Rk.

The domain of a symmetric Lipschitz continuous function f : [0, 1]k → R is the hyper-
cube [0, 1]k, which consists of k! hypertetrahedrons of the same size and shape. On each
of them, function f attains equal values. Therefore, it is sufficient to solve only GOP (1)
on one of these hypertetrahedrons, e.g. it is sufficient to find the solution of the GOP

argmin
(c1,...,ck)∈∆

f(c1, . . . , ck), (2)

where hypertetrahedron ∆ is given by

∆ = {(c1, . . . , ck) ∈ [0, 1]k : 1 ≥ c1 ≥ · · · ≥ ck ≥ 0}. (3)

In this paper, we propose how GOPs (2)–(3) can be transformed into a GOP on [0, 1]k.
After that, the application of some well-known global optimization method in standard
form [6, 7, 12, 24, 32] (e.g. DIRECT) becomes possible.

The paper is organized as follows. A new method for solving a GOP for a symmetric
Lipschitz continuous function is described in detail in Section 2. The method is illustrated
and tested on a center-based clustering problem for the data A ⊂ [0, 1] that have only one
feature. In Section 3, it is shown that, with natural conditions on the data, this problem
always has a solution which is attained in each of k! hypertetrahedrons contained in
hypercube [0, 1]k. Several numerical experiments are given in Section 4. Also, the method
is illustrated and tested on the image segmentation problem. Finally, some conclusions
are discussed in Section 5.

2 Lipschitz global optimization for a symmetric func-
tion

A direct application of known methods for solving GOP (1) for complex problems [6, 9, 17–
19, 23, 36? –39] is difficult especially if the number of independent variables is somewhat
greater. Because of the symmetry property of the minimizing function, it is sufficient to
consider only GOPs (2)–(3). In this way, the area in which GOP (1) is solved has been
reduced by k! times, but it has now become a nonlinear GOP with linear constraints.
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From the geometrical point of view, the domain of minimizing function in this case
becomes a hypertetrahedron, and therefore known global optimization methods (e.g. the
DIRECT (DIviding RECTangles) algorithm [15]) cannot be applied in standard form. In
[11], an efficient modification of the well-known DIRECT method called SymDIRECT is pro-
posed for solving this problem. The modification implies that, in the dividing process,
only those hyperrectangles are taken into consideration that are completely or only par-
tially contained in the region ∆ given by (3). A still more effective method for solving a
GOP for a symmetric Lipschitz continuous function are DISIMPL (DIviding SIMPLices)
algorithms proposed in [24–27].

Naturally, one could question how GOPs (2)–(3) can be transformed to a GOP on the set
[0, 1]k. In that case, for solving this problem, some known global optimization methods
could be used in standard form.

2.1 An example
The concept of the method proposed in this paper will be illustrated on the following
simple example.
Example 1. Let A be the set obtained by Wolfram Mathematica [45]:
In[1]:= m = 20; SeedRandom[13];

A = RandomReal[{0, 1}, m]

Out[1]={0.456535, 0.868230, 0.704274, 0.795001, 0.040520, 0.957827, 0.008372, 0.251257,
0.014313, 0.743946, 0.066294, 0.783009, 0.907372, 0.081007, 0.486618, 0.824774,
0.684515, 0.063848, 0.086283, 0.658425}

Elements of the set A will be denoted by ai, i = 1, . . . , m. The set A should be
partitioned into two nonempty disjoint subsets π1, π2 by using least squares distance-like
function d(x, y) = (x − y)2 and by solving the center-based clustering problem (see e.g.
[14, 16, 31, 34]

argmin
(c1,c2)∈[0,1]2

F (c1, c2), F (c1, c2) =
m∑

i=1
min{d(c1, ai), d(c2, ai)}. (4)

The function F is a symmetric Lipschitz continuous function [11, 28, 29, 31], it does
not have to be either convex or differentiable and it attains its global minimum in at least
two different points

argmin
(c1,c2)∈[0,1]2

F (c1, c2) = {(c⋆
1, c⋆

2), (c⋆
2, c⋆

1)},

where c⋆
1 = 0.0765, c⋆

2 = 0.7392, F (c⋆
1, c⋆

2) = 0.3003. Therefore, GOP (4) can be reduced
to a GOP on triangle △(OAB) = {(c1, c2) ∈ [0, 1]2 : 1 ≥ c1 ≥ c2 ≥ 0} (see Fig. 1a).
Furthermore, by means of appropriate transformation, this problem can be transformed
to a GOP on [0, 1]2 for a new function Φ defined on [0, 1]2.

For this purpose, let us define a linear operator T : R2 → R2 by T (e1) = e1, T (e2) =
e1 +e2, where {e1, e2} is a standard orthonormal basis in R2. Operator T maps the square
�(OABC) to rhombus R(OAB′C ′) (see Fig. 1b).
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(a) F : [0, 1]2 → R

∆

0 1

1

(b) F : R → R

O A

B′B = C ′C
(c) Φ: [0, 1]2 → R

0 1

1

Figure 1: ContourPlots of minimizing functions

Let Φ: [0, 1]2 → R, Φ(ζ1, ζ2) := F (T (ζ1, ζ2)) = F (ζ1 + ζ2, ζ2) be a new function. The
domain of the function Φ is a square [0, 1]2 and their ContourPlot can be seen in Fig. 1c.
There holds (a more general assertion is shown in Section 3.1)

min
(c1,c2)∈∆

F (c1, c2) = min
(c1,c2)∈R

F (c1, c2) = min
(ζ1,ζ2)∈[0,1]2

Φ(ζ1, ζ2),

where (c1, c2) = T (ζ1, ζ2).
For the data set A from Example 1 by using the DIRECT algorithm in standard form,

we obtain (see http://www.mathos.unios.hr/images/homepages/scitowsk/DIRECT-2.nb)

(ζ⋆
1 , ζ⋆

2 ) ∈ argmin
(ζ1,ζ2)∈[0,1]2

Φ(ζ1, ζ2), where

ζ⋆
1 = 0.6627, ζ⋆

2 = 0.0765, Φ(ζ⋆
1 , ζ⋆

2 ) = 0.3003,

and finally
(c⋆

1, c⋆
2) = T (ζ⋆

1 , ζ⋆
2 ) = (ζ⋆

1 + ζ⋆
2 , ζ⋆

2 ) = (0.7392, 0.0765).

2.2 A new method
The concept of the method proposed in this paper implies that, by virtue of a simple
transformation, GOP (2) is observed on the hypercube [0, 1]k instead of the set ∆.

The following lemma shows how a hypertetrahedron ∆ given by (3) can be obtained
from the hyperrectangle [0, 1]k.

Lemma 1. Let T : Rk → Rk be a linear operator given by T (ei) =
i∑

j=1
ej, where {e1, . . . , ek}

is a standard orthonormal basis in Rk. Then, there holds

c ∈ ∆ ⇔ c ∈ [0, 1]k and T −1(c) ∈ [0, 1]k .

Proof. It is easy to verify that T −1 : Rk → Rk is given by

T −1(e1) = e1, T −1(ei) = ei − ei−1, i = 2, . . . , k, (5)
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and T −1(c) = (c1 − c2, . . . , ck−1 − ck, ck). Therefore, for all c ∈ [0, 1]k, such that T −1(c) ∈
[0, 1]k, there holds

0 ≤ ci ≤ 1, i = 1, . . . , k,

0 ≤ ci − ci+1 ≤ 1, i = 1, . . . , k − 1,

which is equivalent to

0 ≤ ci ≤ 1, i = 1, . . . , k,

ci ≥ ci+1, i = 1, . . . , k − 1,

i.e. to

1 ≥ c1 ≥ c2 ≥ · · · ≥ ck ≥ 0. �

The following theorem shows how GOP (2) can be transformed into a corresponding
GOP on the hypercube [0, 1]k.

Theorem 1. Let f : [0, 1]k → R be a symmetric Lipschitz continuous function which
attains its global minimum at the point c⋆ ∈ ∆ ⊂ [0, 1]k, and let Φ: [0, 1]k → R,
Φ(ζ) = f(T (ζ)), where T : Rk → Rk is a linear operator given by T (ei) =

i∑
j=1

ej, where

{e1, . . . , ek} is a standard orthonormal basis in Rk. Then, there exists ζ⋆ := T −1(c⋆) ∈
[0, 1]k, in which the function Φ attains its global minimum and there holds

Φ(ζ⋆) := min
ζ∈[0,1]k

Φ(ζ) = min
c∈∆

f(c) =: f(c⋆), (6)

where c = T (ζ).

Proof. For c⋆ = (c⋆
1, . . . , c⋆

k) ∈ ∆, there holds

0 ≤ c⋆
k ≤ 1 and 0 ≤ c⋆

i − c⋆
i+1 ≤ c⋆

i ≤ 1, i = 1, . . . , k − 1,

and hence ζ⋆ = T −1(c⋆) ∈ [0, 1]k. Due to linearity of the operator T , the function Φ at
the point ζ⋆ attains its global minimum. Furthermore, it follows that

Φ(ζ⋆) = min
ζ∈[0,1]k

Φ(ζ) = min
ζ∈[0,1]k

f(T (ζ)) = min
T −1(c)∈[0,1]k

f(c).

Since the function f attains its global minimum on the set ∆ ⊂ [0, 1]k, according to
Lemma 1, there holds

min
T −1(c)∈[0,1]k

f(c) = min
c∈∆

f(c) = f(c⋆). �

Since from the domain [0, 1]k of the minimizing symmetric function f only one of k!
hypertetrahedrons is separated and the point of global minimum is searched for on this
hypertetrahedron, the new global optimization method for solving GOP (1) for a symmetric
Lipschitz continuous function f will be called “Separation Method”, and the corresponding
algorithm will be called “SepDIRECT”.
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Algorithm 1. (SepDIRECT)

Step 1: For a symmetric Lipschitz continuous function g : [a, b]k → R, define function
f : [0, 1]k → R, such that f = g ◦ κ, where κ : [0, 1]k → [a, b]k, κ(x) = Dx + u,
D = diag (b − a, . . . , b − a) ∈ Rk×k, u = (a, . . . , a) ∈ Rk;

Step 2: For a symmetric Lipschitz continuous function f : [0, 1]k → R, define a new func-
tion Φ: [0, 1]k → R, Φ(ζ) := f(T (ζ)), where T : Rk → Rk is a linear operator
given by T (ei) =

i∑
j=1

ej, where {e1, . . . , ek} is a standard orthonormal basis in Rk;

Step 3: By using some global optimization method, solve GOP: argmin
ζ∈[0,1]k

Φ(ζ) =: ζ⋆;

Step 4: A solution of the GOP argmin
c∈[0,1]k

f(c) is given by: ĉ := T (ζ⋆) and a solution of

argmin
c∈[a,b]k

g(c) is given by c⋆ = κ(ĉ).

3 An application: A center-based clustering problem
for the set A⊂R

An important and complex problem, which can be considered as a GOP, is a data clustering
problem (see e.g. [1–3, 16, 21, 22, 30, 33, 35, 43, 44]). A partition of the set A = {ai ∈
Rn : i = 1, . . . , m} into 1 ≤ k ≤ m disjoint subsets π1, . . . , πk, such that

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj| ≥ 1, j = 1, . . . , k, (7)

will be denoted by Π = {π1, . . . , πk} and the set of all such partitions by P(A, k).
Because of simplicity, this problem will be considered for the data that have only one

feature, i.e., a center-based clustering problem for the set A ⊂ R will be considered. Let
us mention only two applications of this problem, i.e., the problem of determining spatial
clusters of accidents along a continuous highway [13, 31] and the application to the image
segmentation problem (see, e.g., [2, 4, 42]).

Furthermore, without loss of generality, let us suppose that A ⊂ [0, 1] ⊂ R, |A| = m

is a finite subset of real numbers.
If some distance-like function d : R × R → R+ is introduced [16, 30], then to each

cluster πj ∈ Π we can associate its center c⋆
j , defined by

c⋆
j = c⋆(πj) := argmin

x∈[0,1]

∑
ai∈πj

d(x, ai). (8)

It is said that the partition Π⋆ ∈ P(A, k) is a globally optimal k-partition if

Π⋆ = argmin
Π∈P(A,k)

F(Π), F(Π) =
k∑

j=1

∑
ai∈πj

d(cj, ai), (9)



7

where F : P(A, k) → R+ is the objective function.
This problem can be formulated as a center-based clustering problem [14, 20, 34]

argmin
(c1,...,ck)∈Rk

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑

i=1
min

1≤j≤k
d(cj, ai). (10)

The solutions of optimization problems (9) and (10) coincide [40].

3.1 Existence and solution localization
For a general problem (10), it will be shown that the objective function F attains its
global minimum on a unit hypercube [0, 1]k. It is sufficient to search for the function F

on the set ∆ given by (3) due to its symmetry property.
First, the following theorem shows that the function F given by (10) outside the

hypercube [0, 1]k does not achieve a lower value.

Theorem 2. Let A ⊂ [0, 1] ⊂ R be a finite set of real numbers which should be grouped
into k disjoint nonempty subset-clusters. Then for each (c1, . . . , ck) ∈ Rk there exists
(c̄1, . . . , c̄k) ∈ [0, 1]k, such that F (c̄1, . . . , c̄k) ≤ F (c1, . . . , ck).

Proof. The case when (c1, . . . , ck) ∈ [0, 1]k is trivial. Therefore, let us assume that there
exists at least one cj /∈ [0, 1]. Let (c̄1, . . . , c̄k) ∈ [0, 1]k be a point defined by

c̄j =


cj, if cj ∈ [0, 1]
1, if cj > 1
0, if cj < 0.

There holds
d(c̄j, a) ≤ d(cj, a), ∀a ∈ A and ∀j = 1, . . . , k,

i.e., more precisely

d(c̄j, a) = d(cj, a), ∀a ∈ A & cj ∈ [0, 1],
d(c̄j, a) < d(cj, a), ∀a ∈ A & cj /∈ [0, 1],

from where it follows

min
1≤j≤k

d(c̄j, a) ≤ min
1≤j≤k

d(cj, a), ∀a ∈ A,

i.e., F (c̄1, . . . , c̄k) ≤ F (c1, . . . , ck).

The following theorem shows that, with natural conditions on the data, the objective
function F defined by (10) outside the hypercube [0, 1]k always attains a strictly higher
value than on the set ∆ ⊂ [0, 1]k.
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Theorem 3. Let A ⊂ [0, 1] ⊂ R be a finite set of real numbers which has at least k

mutually different elements, and which should be grouped into k disjoint nonempty subset-
clusters.

Then for each (c1, . . . , ck) ∈ Rk \ [0, 1]k there exists (ĉ1, . . . , ĉk) ∈ ∆, such that
F (ĉ1, . . . , ĉk) < F (c1, . . . , ck).

Proof. Let (c1, . . . , ck) ∈ Rk \ [0, 1]k be an arbitrary point. This means that there exists
s ∈ {1, . . . , k} such that cs ∈ R \ [0, 1]. Let us define (ĉ1, . . . , ĉk) ∈ [0, 1]k in the following
way

ĉj =


cj, if cj ∈ [0, 1]
amin = min{a ∈ A : a /∈ {c1, . . . , ck}}, if cj < 0
amax = max{a ∈ A : a /∈ {c1, . . . , ck}}, if cj > 1

Without loss of generality, let us suppose that cs > 1 (as in Figure 2). Then

c10 1

amin amax

ĉs cs

Figure 2: Data set A (dashes) and centers {c1, . . . , ck} (dots)

(i) for a = amax there holds 0 = d(ĉs, a) < d(cj, a), ∀j = 1, . . . , k and therefore,
min

1≤j≤k
d(ĉj, a) < min

1≤j≤k
d(cj, a);

(ii) for amin ≤ a < amax there holds d(ĉs, a) < d(cs, a) and therefore,
min

1≤j≤k
d(ĉj, a) ≤ min

1≤j≤k
d(cj, a);

(iii) for a > amax or a < amin there holds min
1≤j≤k

d(ĉj, a) = min
1≤j≤k

d(cj, a) = 0.

Therefore, F (ĉ1, . . . , ĉk) < F (c1, . . . , ck) for each permutation of coordinates of the point
(ĉ1, . . . , ĉk) ∈ [0, 1]k, and consequently also for 1 ≥ ĉi1 ≥ · · · ≥ ĉik

≥ 0, i.e., for
(ĉi1 , . . . ĉik

) ∈ ∆.

So, instead of solving a nonlinear GOP (10), it is sufficient to solve the following non-
linear GOP with linear constraints

argmin
(c1,...,ck)∈∆

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑

i=1
min

1≤j≤k
d(cj, ai), (11)

where the set ∆ is given by (3).

3.2 Searching for the globally optimal partition of the set A ⊂ R
Function F defined in (11) is a symmetric Lipschitz continuous function, which, according
to Theorem 2 and Theorem 3, attains its global minimum on the set ∆ given by (3).
Therefore, Theorem 1 can be applied.
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Corollary 1. Let A ⊂ R be the set of real numbers and d : R × R → R+ some distance-
like function and let the function F given by (11) attain its global minimum at the point
c⋆ ∈ ∆. Then it holds

F (c⋆) = min
ζ∈[0,1]k

Φ(ζ) =: Φ(ζ⋆),

where Φ(ζ) = F (T (ζ)), ζ⋆ = T −1(c⋆) and T : Rk×k → Rk×k is a linear operator given by
T (ei) =

i∑
j=1

ej, where {e1, . . . , ek} is a standard orthonormal basis in Rk.

Therefore, instead of solving the nonlinear GOP with linear constraints (11), the fol-
lowing GOP

argmin
ζ∈[0,1]k

Φ(ζ), Φ(ζ) = F (T (ζ)) (12)

can be solved on the hyperrectangle [0, 1]k.
The problem will be illustrated on Example 4 from paper [11]. In this example, in the

corresponding set ∆ there are at least two local minima of the function F .

Example 2. The set of m = 10 uniform distributed random numbers from [0, 1]

A = {0.008, 0.014, 0.041, 0.251, 0.457, 0.704, 0.744, 0.795, 0.868, 0.958}.

should be partitioned into 3 clusters.

ĉ3 ĉ2 ĉ1
F (ĉ) = 0.0813

c⋆
3 c⋆

2 c⋆
1

F (c⋆) = 0.0628

Figure 3: The data and the centers

In this case, the minimizing function F attains local minima at points ĉ and c⋆ (see
also Fig. 3).

ĉ = (0.8138, 0.4570, 0.0785) ∈ ∆, F (ĉ) = 0.0813,

c⋆ = (0.8138, 0.3540, 0.0210) ∈ ∆, F (c⋆) = 0.0628,

where ∆ = {(c1, c2, c3) ∈ [0, 1]3 : 1 ≥ c1 ≥ c2 ≥ c3 ≥ 0}.

These points are obtained by applying the k-means algorithm and choosing appropriate
initial approximations.

By applying the DIRECT algorithm to solving the corresponding GOP (11), we obtain
the point c⋆. Application of the DIRECT algorithm to the corresponding problem (12)
yields ζ⋆ = (0.45991, 0.33280, 0.02111). It is easy to verify that c⋆ = T (ζ⋆).
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4 Numerical experiments
The new Separation Method described in Section 2.2 searches for a solution of a GOP
for symmetric Lipschitz continuous function and shows significantly better characteristics
than known global optimization algorithms in standard form. At the same time, it is
not expected that this method will show better performance than some special methods
for solving a GOP for symmetric Lipschitz continuous function (SymDIRECT [15], DISIMPL
[25]).

It should be emphasized that a direct application of the DIRECT algorithm for solving
a GOP for a symmetric Lipschitz continuous function F leads to searching for all k! points
of global minima of the symmetric function F . For example, in case of searching for a
globally optimal k-partition of the set A ⊂ R, for a somewhat larger k, a standard DIRECT
algorithm is very inefficient because the number of potentially optimal rectangles in the
implementation of the algorithm becomes too large and the method is too slow. On the
other hand, a direct application of the DIRECT algorithm to the hypertetrahedron ∆ given
by (3) is not possible.

Searching for a solution of the corresponding GOP in the hypertetrahedron ∆ reduces
the number of points searched for by k! times. By applying the linear operator T given by
(5), the hypertetrahedron ∆ is transformed on the hypercube [0, 1]k, and this allows for
the direct use of known global optimization algorithms in standard form (for example, the
DIRECT algorithm), for which there are publicly available and well elaborated computer
codes (see, e.g., [7, 8, 10]). This is the main advantage of the new Separation Method.

Therefore, the new Separation Method described in Section 2.2 will be illustrated and
compared with the DIRECT algorithm and the SymDIRECT algorithm on several examples
based on the problem described in Section 3.1. The well known DIRECT algorithm is
described well in [8, 15].

SymDIRECT algorithm [11] is a modification of the DIRECT algorithm for a symmetric
Lipschitz continuous function. This means that in the procedure of dividing some hy-
perrectangle attention should be paid to the part of the region [0, 1]k it appears in. The
following situations might occur:

(i) If the whole hyperrectangle is located in the region ∆, all hyperrectangles that
emerge by its division will also be contained in the region ∆. All of them are also
liable to further division.

(ii) If a hyperrectangle appears outside the region ∆, the point of the global minimum we
search for cannot appear therein. Hence such hyperrectangles shall not be divided
further.

(iii) If a hyperrectangle lies in the region ∆ only partially, some hyperrectangles that
come into existence by its division can be fully contained in the region ∆ (classified
under case (i)), some might be completely outside the region ∆ (classified under
case (ii)), and some might lie only partially in the region ∆ (again classified under
case (iii)).
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Sufficient conditions by which some hyperrectangle completely or partially lies in the
region ∆ are given in [11]. These conditions should be determined for all given cases, and
they should be tested in the iterative procedure.

In this paper, all evaluations were carried out in Mathematica2 and the new Separation
Method in the examples listed below is implemented by using the DIRECT algorithm, al-
though some other algorithms for global optimization might be used for that purpose.

Example 3. Efficiency of all three aforementioned methods will be compared in terms of
the necessary CPU-time and the number of function evaluations on the basis of synthetic
data generated similarly to [43].

Ten experiments have been conducted for each k ∈ {2, . . . , 10} as follows. First, k

points z1, . . . , zk uniformly distributed in the interval are chosen, such that they mutually
differ for at least 1

2k
. After that, in the neighborhood of each point zj ⌊m

k
⌋ ± ⌊ m

4k
⌋, random

real numbers from N (zj,
1

4k
) are generated, where m = 200. For the data point sets

obtained in such way, we searched for a globally optimal partition

(i) by applying the DIRECT algorithm for solving GOP (10);

(ii) by applying the SymDIRECT algorithm for solving GOP (11);

(iii) by applying the SepDIRECT algorithm for solving GOP (12) by using the DIRECT al-
gorithm.

Average CPU-times and the corresponding number of function evaluations (Nf ) for
all three methods are shown in Table 1. Application of the DIRECT algorithm for solving
GOP (10) searches all k! points of global minima of the function F and therefore, in the
optimizing process, the number of potentially optimal rectangles becomes too large and
the method too slow. Therefore, for k > 7, the method has not been tested.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

DIRECT(Nf ) 100 320 847 4224 18338 130867 - - -
SymDIRECT(Nf ) 65 116 387 401 451 493 584 950 683
SepDIRECT(Nf ) 55 126 362 398 428 523 1574 2118 1831
DIRECT(CPU) 0.020 0.072 0.215 1.662 13.115 413.220 - - -
SymDIRECT(CPU) 0.017 0.039 0.062 0.131 0.184 0.264 0.317 2.765 4.248
SepDIRECT(CPU) 0.012 0.036 0.056 0.093 0.168 0.290 1.765 6.548 9.522

Table 1: Average CPU-time (in sec) and the number of function evaluations Nf .

Both the SymDIRECT algorithm and the new SepDIRECT algorithm require significantly
shorter CPU-time and a smaller number of function evaluations than the application of

2Corresponding Mathematica–modules and testing of algorihms were done by Ivan Vazler, De-
partment of Mathematics, University of Osijek, on the computer with a 2.66 GHz Intel(R)
Core(TM)i5 CPU with 4GB of RAM. Mathematica–modules for DIRECT and SymDIRECT can be found at:
http://www.mathos.unios.hr/images/homepages/scitowsk/DIRECT-2.nb
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the DIRECT algorithm for solving GOP (10). By using ordinary Mathematica-codes available
on the website http://www.mathos.unios.hr/images/homepages/scitowsk/DIRECT-2.nb, in case
of solving complex problems (k ≥ 7) the SymDIRECT algorithm shows higher efficiency. By
using optimized computer codes for the standard DIRECT algorithm efficiency improvement
of the new algorithm SepDIRECT could be expected.

Example 4. Efficiency of all three aforementioned methods will be compared in terms
of the necessary CPU-time and the number of function evaluations on the standard sym-
metric functions used in [11]. Corresponding Mathematica-codes can be found on the
previously mentioned website.

Method Grbić Alolyan Easom Rastrigin Shubert
Nf CPU Nf CPU Nf CPU Nf CPU Nf CPU

DIRECT 321 0.078 249 0.063 865 0.594 257 0.031 - -
SymDIRECT 173 0.047 141 0.047 521 0.328 177 0.047 - -
SepDIRECT 130 0.047 228 0.047 840 0.328 242 0.047 116 0.046

Table 2: CPU-time (in sec) and the number of function evaluations Nf . DIRECT and SymDIRECT
algorithms do not give a global minimum for the Shubert test function.

The results obtained in the previous example are confirmed: both the SymDIRECT
algorithm and the new SepDIRECT algorithm require significantly shorter CPU-time and
a smaller number of function evaluations than the application of the DIRECT algorithm for
solving GOP (10). By using optimized computer codes for the standard DIRECT algorithm,
significant efficiency improvement of the new algorithm SepDIRECT could be expected.

4.1 Image segmentation problem
The proposed Separation Method will be illustrated on the image segmentation problem
(see, e.g., [2, 4, 42]). For example, a 512 × 512 grayscale test image “Elaine” (see Fig. 4a)
will be segmented into 2, 4 and 8 layers (clusters) based on image gray levels. Let A =
{ai ∈ R : i = 1, . . . , 262 144} be the set (finite sequence) of real numbers which represent
gray levels of the points of the 512 × 512 image “Elaine”.

The weight wi = 1 is associated to each ai ∈ A . The set A should be partitioned
into k = 2, 4 or 8 clusters. To each cluster (which contains points with a similar gray
level) we will associate its centroid, and then to all points of this cluster we will associate
the gray level of that centroid. An optimal partition in this case can be considered as
a compression of the original image. Images Fig. 4b-d represent optimal partitions with
2, 4 and 8 clusters (layers). Above each of those images, the size of their eps format is
indicated. Under each image, a gray-level histogram with corresponding cluster centers
(gray levels) is shown.

For example, if k = 2, the set A is partitioned into two clusters: cluster π⋆
1 with brighter

points and center c⋆
1 = 0.39, and cluster π⋆

2 with darker points and center c⋆
2 = 0.69. After
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(a) Original (366 KB)

(b) k = 2 (31 KB) (c) k = 4 (54 KB) (d) k = 8 (91 KB)

0.690.39 0.810.630.480.29 0.880.750.650.570.510.440.330.21

Figure 4: The original image and its segmentation into 2, 4 and 8 clusters

that, to each point of cluster π⋆
1 and to the each point of cluster π⋆

2 we will associate the
gray level c⋆

1 and the gray level c⋆
2, respectively. In this way, we obtain Fig. 4b. Note

that in this way we interpreted a grayscale image by a finite sequence of 262 144 members
which can be only the numbers 0.39 or 0.69.

k = 2 k = 4 k = 8
Time Nf Time Nf Time Nf

DIRECT 0 99 0.141 1 065 2:46:37 944 601
SymDIRECT 0.015 57 0.031 137 0.156 587
SepDIRECT 0.015 63 0.031 173 0.359 1 259

Table 3: CPU-time and the number of function evaluations Nf .

The necessary CPU-time for searching for an optimal partition with 2, 4 and 8 clusters
by applying the DIRECT algorithm, the SymDIRECT algorithm and the SepDIRECT (by using
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the DIRECT algorithm) is very short (see Table 3).

5 Conclusions
Generally, if a symmetric Lipschitz continuous function f : [a, b]k → R attains its global
minimum, then the set argmin

x∈[a,b]k
f(x) has at least k! different points. Therefore, a di-

rect application of some of known global optimization methods is very inefficient. If
the global minimum is searched for only in one of k! equal hypertetrahedrons contained
in the hypercube [a, b]k, the problem is transformed into a GOP with linear constraints.
Some known global optimization algorithms in standard form (e.g. DIRECT) cannot be
applied to solving this problem. In this paper, it is shown how this GOP can be easily
transformed into a GOP on a hypercube [0, 1]k. In this way, the new Separation Method
is constructed and the corresponding minimizing function Φ has k! times less points of
the global minimum, so that the application of known global optimization methods be-
comes significantly more efficient. However, the new Separation Method is primarily
theoretically important, although its numerical performance does not lag significantly be-
hind known global optimization methods for the symmetric Lipschitz continuous function
(SymDIRECT, DISIMPL).

This is confirmed by numerous numerical experiments carried out when solving a
center-based clustering problem with synthetic data. A center-based clustering problem
(10) for the set A ⊂ Rn is a very demanding global optimization problem even in the case
of data having only one feature. The objective function for this problem is a symmetric
Lipschitz continuous function. Also, it is proved that, with natural conditions on the
data, this problem always has a solution.

It can be expected that the new Separation Method can be applied to clustering
problems in higher dimensions, too. Namely, linear transformation T given by (5) is very
simple, and after that everything depends on the choice of the global optimization method
on [0, 1]k.

Finally, it should be emphasized that the proposed new Separation Method allows for
the direct and efficient use of well-known global optimization algorithms, as for example
DIRECT.
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